

IMPLEMENTING LARGE DATASET SYNCHRONIZATION ON RESOURCE-
LIMITED MOBILE TERMINALS

Constantin Pistol

Computer Dept., Faculty of Automation, Computers and Electronics, University of Craiova

Str. Lapus Nr. 5, Craiova, Romania
costi@xts.ro

Abstract: Today’s automation systems are shifting
more and more toward small, portable, mobile
terminals that provide users a full interface on large
Enterprise Resource Planners or database systems.
With more and more flexibility and ease of use being
incorporated in such terminals, the complexity and
amount of data that is transferred also increased
significantly. Having wireless terminals that are
capable of working both online and offline, the fast
synchronization of large amounts of data has become
an issue. The terminals (like PocketPCs) are
considerably resource restricted, and so memory
space and CPU cycles have to be carefully optimized
in order to achieve usable (fast) systems. The paper
presents a combination of custom XML parser and
PocketPC local database access that allows for fast
synchronization (table duplication) between
PocketPC terminals and external (PC) data sources.

Keywords: Mobile, PDA, Syncronization,XML

INTRODUCTION

We will consider in this paper only the aspects
regarding the implementation of a fast data handling /
data synchronization on the PocketPC terminal. The
communication and PC server aspects are not
detailed.

A PocketPC terminal (or PDA – Personal Digital
Assistant) is basically a hand-held personal
computer, running a stripped-down version of

Microsoft Windows , namely Windows CE. A typical
computer of this type has a hardware configuration
similar to the following :

CPU : Strong
ARM 206 MHz

Memory : 64 MB RAM, 32MB
ROM

Display : 320x240 pixel,
64.000 colors, touch sensitive

Data Comm : Standards-based Spectrum24
IEEE 802.11 wireless adapter (data rate 2 to 11 Mbit)

No hard-drives are supported, mainly due to size
restrictions, but Flash Cards are available for
expanding the available memory space.

It should be noted that a 200 MHz Strong ARM CPU
can not be directly compared (speed-wise) to a
standard 200 MHz desktop CPU (like an Intel
Pentium). The performance of the former is at least
an order of magnitude lower than that of the latter, in
spite of having the same clock rate.

 We’ll consider that data is transmitted in the form of
eXtended Markup Language (XML). We can define
a markup language as a set of rules which impose a
syntax used to define, delimit, and describe text or
data within a document through the use of tags

(literal strings). Under the above definition, XML is a
markup language that is used to convey metadata
(information about data). The language depicts the
structure as well as the meaning of data contained
within an XML document. However, XML is not
concerned with formatting but with structure and
semantics. It is a simple, standard way to delimit text
data in a self-describing way.

A sample of XML formatted data :

<item>

<name>IR Sensor</name>

<code>12355</code>

<availability>Out of stock</availability>

</item>

XML imposed as a widely used standard mostly
because it is non-proprietary (open) and easy to read
and write by both humans and computers.

It proved an excellent format for the interchange of
both data among different applications and
computing platforms (platform independent).
Another plus is the self-describing nature of XML
data that makes it an effective choice in the field of
distributed applications. XML allows for easy
transfer of data over standard Internet protocols, such
as HTTP (making it firewall friendly). It is also
extensible and supported on virtually every platform,
being usable basically from any programming
language.

For the actual communication, an XML based
protocol like Server Object Access Protocol (SOAP)
can be used (although it is not mandatory). Simple
Object Access Protocol (SOAP) is a lightweight,
extensible protocol based on XML designed for
facilitating information exchange in decentralized,
distributed environments. Most importantly, SOAP
defines rules for message structuring, as well as a
message processing model. A convention for making
remote procedure calls together with a set of
encoding rules for serializing data are also defined.
SOAP provides the base for many modules and
protocols running over a multitude of underlying
protocols (HTTP being the most common).

MAIN ACTIONS

Given these aspects, we can encapsulate (from a
logical standpoint) remote communication in a
function with the prototype:

XMLDataType GetRemoteData (CmdType cmd)

Given the XML containing the data (a list of
records), there are two steps that need to be taken in
order to have the data inside a local PocketPC
database:

- parsing the XML and extracting the data records

- inserting each record in the corresponding table of
a local database

Parsing

For the the communication layer the freely available
library PocketSOAP (www.pocketsoap.com) was
used. It presents itself as an open source SOAP client
PocketPC COM component, with a straight forward,
easy to use interface for SOAP based
communication. The package includes a HTTP 1.1
transport for making HTTP based SOAP requests.

Although the PocketSOAP library provides a
serializer/deserializer that could perform the parsing
functionality required, it was ruled out because of
speed/resource limitations. PocketSOAP’s built-in
XML parser creates an in-memory tree object model
of the received XML. In our target applications, the
volume of data is very high , with XML files in the
order of megabytes. Under these conditions, the
built-in parser fails to do it’s job because of out-of-
memory errors (because total device memory is only
64 MB, with roughly half of it usually available).

Given the situation, a custom XML parser was
implemented. Light-weight and fast, it uses an
optimized SAX-style parsing, allowing for minimal
memory footprint (a few KB more than the XML
file itself).

The core of the parser is the Boyer-Moore algorithm,
one of a larger family of algorithms designed for
performing exact string searches, approximate string
searches, ’sounds-like’ string searches, and other
types of textual comparisons.

This parser (we’ll call it DAX Parser) goes through
the XML sequentially, creating directly a list of
records without the intermediary tree representation.

But, even this can be further optimized (in some
particular cases). The cases in which this is true is
when large amounts of XML are expected, and the
processing can be done at a record-by-record level.
Synchronizing a local database with a remote
database is such a data intensive, repetitive task.

Let’s see how will DAX Parser be used in such a
case, first in the standard way, and then using an
optimized interface to the parser.

Standard use

We will consider that 20.000 records must be
retrieved from a remote tabel and inserted in a local
one. The data retrieval function to be used in this
case is (pseudocode) :

List<RecordType> GetData(CommandType cmd) {

 Xml = GetRemoteData(cmd);

 List = Parse(Xml);

 Return List;

}

This function will get called with the corresponding
select-type SQL query as parameter. After the data is
received as XML (we’ll consider it to be about 5
MB), it is internally parsed by DAX Parser and a
List<RecordType> is built and returned. After
GetData() has returned, the application will start
looping through the returned list, inserting each
record in the local database. The steps of this action
(and their corresponding memory use) can be
represented in the following manner :

Step Action Max Memory

1 Call to GetData 0 MB

2 XML received XML : 5 MB

3 Parsing and list
building

XML,part. list :
15MB max

4 GetData() returns
list

Record list : 10 MB

5 Loop through list
and insert each
record

Record list : 10 MB

Fig.1 Standard parser call and insertion steps

Memory use peaks at 15MB, and it takes two full
loops through the data records until they get inserted
into the local database (at step 3 and 5).

Optimizing with callbacks

The optimization implemented for such scenarios
relays on the so-called callback functions
mechanism. We modify the parser (and GetData()) to
accepts as parameter a pointer to a function – a
function that will be called to handle each XML
record as it is parsed. No list is built in this case.

The handler must have a prototype like the
following:

Bool HandleRecord(RecordType rec);

A pointer to such a function is passed to the
GetData() call as an optional parameter :

List<RecordType> GetData(CommandType cmd,
PHANDLE pHandleRec=NULL) ;

 When pHandleRec is not NULL, an empty list is
returned. However, as soon as a full record is parsed,
we get a chance to process it. In the case presented,
we’ll consider that the HandleRecord() function
inserts the record received into the local database.
The steps in a GetData()call using this approach are :

Step Action Max
Memory

1 Call to GetData 0 MB

2 XML received XML : 5 MB

3 Loop – [1. parse one
record 2. call
(*pHandleRec)(rec) to
insert it]

XML+1 rec ~
5MB

4 GetData returns empty
list

0 MB

Fig.2 Callback parser call and insertion steps

The gains compared to the standard call are
significant :

1. Memory optimization - Peak memory use down
from 15 MB to 5 MB (the size of the XML data)

2. Speed optimization - One loop through the records
instead of two (removal of step 5)

The HandleRecord function returns a Boolean that
allows for early parse termination. If the value
returned is true then the next record is parsed ,
otherwise the process is halted and GetData() returns
immediately. This comes in very handy for instance
when all we want from the received data is a specific
record that meets a certain criterion. HandleRecord()
will check for the criterion and return false after it is
found. This further optimizes execution time (for
such cases).

Of course, the HandleRecord() can do other things
than database insertion, like filling a list of the
display (or something else that might need to be
done). Generally speaking, it is advised in the case of
large operations that are record oriented rather than
list oriented. Database synchronization is a perfect
match for this optimization.

LOCAL DATABASE ACCESS

Microsoft ADO CE : the problem

Microsoft offers a standard database access layer for
their Windows CE (PocketPC) operating system in
the form of ADO CE (ActiveX Data Objects for CE).
ADO CE proved to be adequate for a small database
activity, but under medium to heavy use it failed to
deliver a good level of performance reliability.

When ADO CE was used for data intensive tasks
such remote-to-local database synchronization, it
proved to be an Achilles’ heel. Memory leaks within
ADO CE’s code were causing major application
slowdowns, and the performance itself (in terms of
speed) was disappointingly low.

After (unsuccessfully) trying various alternatives of
using ADO CE’s functionality, a decision was made
to scrap it altogether and find an alternative.
Unfortunately, the only standard layer on which we
can build upon in the absence of ADO CE is OLEDB
– which is quite a low level layer.

The data access library: XDB

So, a new interface called XDB was created as a
wrapper around OLEDB. It provides the ADO CE
functionality that is needed, and it improves by
adding parameterized query support and exception-
based error handling. The interface XDB creates is
designed along the lines of ADO.NET, with separate
Connection, Data Provider, Data Reader and
Command classes provided.

The boost in performance gained by switching to
XDB was significant. The data-intensive
synchronizations times were reduced by a factor of 2-
3x. An insertion test was performed with records
containing 3 strings and 1 integer in a table with no
indexes defined. The test configuration was a Symbol
PPT 2800 PDA, with Windows CE 3.0 , using ADO
CE 3.1 and Microsoft SQL Server CE 2.0. It yielded
the following results :

Fig.3 XDB insertion speed comparison

The yellow bars show the speed XDB has when
using parameterized queries (a feature not supported
by ADO CE). It basically allows to tell the database
engine the query you want to use, but using
parameters instead of actual data to be inserted. Of
course, this query does no insertion, but allows the
database to make an execution plan and store it.
Afterwards, you start doing inserts by simply
specifying those parameters. Because the database
had already "compiled" what it needs to do to
execute the insertion, things go faster, with less
overhead on each insertion. All this is done at

OLEDB layer, so it is as close to the database core as
you can get.

Used in the HandleRecord() callback function for
inserting records in the local database during a sync,
the speed improvement is dramatic compared to
“normal” inserts.

FINAL REMARKS

The framework was implemented and used in a Sales
Force Automation (SFA) application. The picture
below describes one screen from the user interface
built namely the selection of the client from the local
database.

Fig. 4 GUI Example – search for a client

It delivers a complete, all-around solution, capable of
wireless networking for instant information update as
well as full-featured offline mode for field use. As
such, it is intended to be extended and used on future,
similar projects.

REFERENCES

Andrew Binstock and John Rex (1995), Practical
Algorithms for Programmers, Addison-Wesley.

Alfred V. Aho (1990). Algorithms for finding
patterns in strings. Handbook of Theoretical
Computer Science, chapter 5, pages 254-300.
Elsevier Science Publishers B. V.

James Snell, Doug Tidwell, Pavel Kulchenko
(2002), Programming Web Services with SOAP,
O’Reilly & Associates, Inc.

